It is concluded that the order of growth and convergence of the two kinds of bi-random Taylor series are the same.
研究兩類雙隨機Taylor級數(shù)在滿足一定條件下的收斂性,增長性之間的關(guān)系,得出了在一定條件下,兩類雙隨機Taylor級數(shù)有幾乎相同的收斂性和增[增長]級。
In this paper,the growth and of the random Taylor series in the plane are studied,and under certain conditions,comes the important results:the order of growth on a radius is the same as the plane a.
本文研究了全平面上的隨機Taylor級數(shù)的增長性和收斂性,得出在一定條件下該級數(shù)沿任意半徑上增[增長]級與單位圓內(nèi)的增[增長]級相同。
Then it draws some conditions that the order of growth on a radius is the same as the unit ciricl
研究了單位圓內(nèi)的隨機Taylor級數(shù)的增長性和收斂性,認為沿任意半徑上增[增長]級與單位圓內(nèi)增[增長]級相同。
The Reasearch on Some Properties of growth order of mermorphic functions;
亞純函數(shù)增[增長]級的性質(zhì)進一步探討
The relation between the solution to certain linear differential equation of higher order of certain entire function coefficient and small function is studied,obtaining a series of results,such as growth order,zero point,taking small function point.
對某類整函數(shù)系數(shù)的高階線性微分方程解與小函數(shù)間的關(guān)系進行研究,得到了方程解的增[增長]級,零點,取小函數(shù)點的一系列結(jié)果,所得結(jié)果推廣了一些相關(guān)結(jié)果。
In this paper,the growth orders of the solutions to the differential equation f(k)+Ak-1f(k-1)+.
討論齊次線性微分方程f(k)+Ak-1f(k-1)+…+A0f=0,k≥2的解的增[增長]級,其中方程的系數(shù)為至多有限多個極點的亞純函數(shù),且不存在某個系數(shù)的級大于其他系數(shù)的級。
Under a given condition, we have gained the result that the order of growth on a line is the same as that on the right half plane.
研究了右半平面上的隨機Dirichlet級數(shù)的增長性和收斂性,得出了在一定條件下,任何水平線上增[增長]級與右半平面上相同。
It is proved that if A(z) has order(2,1;ρ),then the order of growth of nontrivial solution is(3,1;ρ) and the equation always has a solution that the exponent of convergence of its zero-sequence is(3,1;ρ) too.
證明當A(z)的增[增長]級為(2,1;ρ)時,方程的每一個非平凡解的增[增長]級都為(3,1;ρ),而且總存在一個非平凡解f(z)的零點收斂級等于其增[增長]級(3,1;ρ)。
It is found that the stochastic Dirichlet series share common features with the non-random Dirichlet series in order of growth.
利用φ-混合序列推廣的Borel-Cantelli引理及一些收斂定理,在條件EXn=0,α>0,0<2α2nσ=2αE|Xn|2≤E2|Xn|<∞下,研究系數(shù)為φ-混合序列的隨機Dirichlet級數(shù)∞∑n=0Xn(ω)e-λns的增長性,得出其增[增長]級和非隨機Dirichlet級數(shù)的增[增長]級有類似的性質(zhì)。
This paper deals with the orders and zeros of the solutions of the differential equation f~((k))+A_(k-1)f~((k-1)).
本文研究了微分方程f~(k)+A_((k-1))f~((k-1))+…+A_0f=F(k≥2)解的增[增長]級和零點收斂指數(shù),其中A_j=B_je~(P_j),j=0,1,…,k-1,B_j(z)為整函數(shù),P_j(z)為多項式,σ(B_j)<degP_j。
It is proved that every solution f of the above equation is of order 1 and hyper order a positive interger no greater than degQ.
研究非齊次線性微分方程f(k)+ak-1f(k-1)+…+a1f′-(eQ(z)-a0)f=1(k≥1)解的增長性,其中aj(j=0,1,…,k-1)為常數(shù),Q(z)是非常數(shù)多項式,得出上述方程的有窮級解的增[增長]級為1,無窮級解的超級為不大于degQ的正整數(shù)。
In this paper, we investigate the orders and zeros of the solutions of the differ- ential equation where Ao,… , Ak-1, F are entire functions with finite orders, and Ao,….
在本文中假設微分方程的系數(shù)為有限級整函數(shù)且滿足:對于每個不恒等于零的系數(shù)Aj(j為整數(shù)且 ),其零點收斂指數(shù)小于其增[增長]級,且當 的增[增長]級等于 Ai與 Aj增[增長]級的最大值,以及自由項F為有限級整函數(shù)。
In this paper,we study the growth of solution for a certain higher order differential equation: f (k) +(Q 1(z)e P 1(z) +Q 2(z)e P 2(z) )f=P 3(z), where P 1(z)=ζ 1z n+…,P 2(z)=ζ 2z n+…,P 3(z)0 are non constant polynomials,and Q 1(z),Q 2(z) are entire functions which have order less then n.
研究了k(≥ 2 )階線性微分方程f(k) +(Q1(z)eP1(z) +Q2 (z)eP2 (z) )f=P3(z)的解的增[增長]級 ,其中P1(z) =ζ1zn+… ,P2 (z) =ζ2 zn+…為非常數(shù)多項式 ,P3(z)為非零多項式 ,Q1(z) ,Q2 (z)均為級小于n的整函數(shù)且不同時恒為零 。
In this paper,we investigate the iterated order and iterated convergence exponent to zero sequence of the solutions of some classes of differential equations.
本文研究了幾類微分方程解的迭代增[增長]級及零點迭代收斂指數(shù)。
本網(wǎng)站所收集內(nèi)容來自網(wǎng)友分享僅供參考,實際請以各學校實際公布信息為主!內(nèi)容侵權(quán)及錯誤投訴:1553292129@qq.com
CopyRight ? 2020-2024 優(yōu)校網(wǎng)[www.ksxh.com.cn]版權(quán)所有 All Rights Reserved. ICP備案號:浙ICP備2024058711號