欧美,亚洲,人妻,中文字幕,久久亚洲精品中文字幕,久久精品国产72国产精,久久久久国产亚洲av麻豆,女人被躁到高潮嗷嗷叫视频

您好,歡迎訪問優(yōu)校網(wǎng)! 收藏本頁 手機訪問
今天是:

growth order是什么意思


中文翻譯[增長]級

網(wǎng)絡釋義

1)growth order,[增長]級2)the order of growth,增長級3)growth order,增長級4)order of growth,增長級5)order,增長級6)growth,增長級7)limit to growth,增長級限8)iterated order,迭代增長級9)normal growth,正規(guī)增長級10)growth pole spatial development,增長級開發(fā)

用法例句

    It is concluded that the order of growth and convergence of the two kinds of bi-random Taylor series are the same.

    研究兩類雙隨機Taylor級數(shù)在滿足一定條件下的收斂性,增長性之間的關(guān)系,得出了在一定條件下,兩類雙隨機Taylor級數(shù)有幾乎相同的收斂性和增[增長]級。

    In this paper,the growth and of the random Taylor series in the plane are studied,and under certain conditions,comes the important results:the order of growth on a radius is the same as the plane a.

    本文研究了全平面上的隨機Taylor級數(shù)的增長性和收斂性,得出在一定條件下該級數(shù)沿任意半徑上增[增長]級與單位圓內(nèi)的增[增長]級相同。

    Then it draws some conditions that the order of growth on a radius is the same as the unit ciricl

    研究了單位圓內(nèi)的隨機Taylor級數(shù)的增長性和收斂性,認為沿任意半徑上增[增長]級與單位圓內(nèi)增[增長]級相同。

    The Reasearch on Some Properties of growth order of mermorphic functions;

    亞純函數(shù)增[增長]級的性質(zhì)進一步探討

    The relation between the solution to certain linear differential equation of higher order of certain entire function coefficient and small function is studied,obtaining a series of results,such as growth order,zero point,taking small function point.

    對某類整函數(shù)系數(shù)的高階線性微分方程解與小函數(shù)間的關(guān)系進行研究,得到了方程解的增[增長]級,零點,取小函數(shù)點的一系列結(jié)果,所得結(jié)果推廣了一些相關(guān)結(jié)果。

    In this paper,the growth orders of the solutions to the differential equation f(k)+Ak-1f(k-1)+.

    討論齊次線性微分方程f(k)+Ak-1f(k-1)+…+A0f=0,k≥2的解的增[增長]級,其中方程的系數(shù)為至多有限多個極點的亞純函數(shù),且不存在某個系數(shù)的級大于其他系數(shù)的級。

    Under a given condition, we have gained the result that the order of growth on a line is the same as that on the right half plane.

    研究了右半平面上的隨機Dirichlet級數(shù)的增長性和收斂性,得出了在一定條件下,任何水平線上增[增長]級與右半平面上相同。

    It is proved that if A(z) has order(2,1;ρ),then the order of growth of nontrivial solution  is(3,1;ρ) and the equation always has a solution  that the exponent of convergence of its zero-sequence is(3,1;ρ) too.

    證明當A(z)的增[增長]級為(2,1;ρ)時,方程的每一個非平凡解的增[增長]級都為(3,1;ρ),而且總存在一個非平凡解f(z)的零點收斂級等于其增[增長]級(3,1;ρ)。

    It is found that the stochastic Dirichlet series share common features with the non-random Dirichlet series in order of growth.

    利用φ-混合序列推廣的Borel-Cantelli引理及一些收斂定理,在條件EXn=0,α>0,0<2α2nσ=2αE|Xn|2≤E2|Xn|<∞下,研究系數(shù)為φ-混合序列的隨機Dirichlet級數(shù)∞∑n=0Xn(ω)e-λns的增長性,得出其增[增長]級和非隨機Dirichlet級數(shù)的增[增長]級有類似的性質(zhì)。

    This paper deals with the orders and zeros of the solutions of the differential equation f~((k))+A_(k-1)f~((k-1)).

    本文研究了微分方程f~(k)+A_((k-1))f~((k-1))+…+A_0f=F(k≥2)解的增[增長]級和零點收斂指數(shù),其中A_j=B_je~(P_j),j=0,1,…,k-1,B_j(z)為整函數(shù),P_j(z)為多項式,σ(B_j)<degP_j。

    It is proved that every solution f of the above equation is of order 1 and hyper order a positive interger no greater than degQ.

    研究非齊次線性微分方程f(k)+ak-1f(k-1)+…+a1f′-(eQ(z)-a0)f=1(k≥1)解的增長性,其中aj(j=0,1,…,k-1)為常數(shù),Q(z)是非常數(shù)多項式,得出上述方程的有窮級解的增[增長]級為1,無窮級解的超級為不大于degQ的正整數(shù)。

    In this paper, we investigate the orders and zeros of the solutions of the differ- ential equation where Ao,… , Ak-1, F are entire functions with finite orders, and Ao,….

    在本文中假設微分方程的系數(shù)為有限級整函數(shù)且滿足:對于每個不恒等于零的系數(shù)Aj(j為整數(shù)且 ),其零點收斂指數(shù)小于其增[增長]級,且當 的增[增長]級等于 Ai與 Aj增[增長]級的最大值,以及自由項F為有限級整函數(shù)。

    In this paper,we study the growth of solution for a certain higher order differential equation: f (k) +(Q 1(z)e P 1(z) +Q 2(z)e P 2(z) )f=P 3(z), where P 1(z)=ζ 1z n+…,P 2(z)=ζ 2z n+…,P 3(z)0 are non constant polynomials,and Q 1(z),Q 2(z) are entire functions which have order less then n.

    研究了k(≥ 2 )階線性微分方程f(k) +(Q1(z)eP1(z) +Q2 (z)eP2 (z) )f=P3(z)的解的增[增長]級 ,其中P1(z) =ζ1zn+… ,P2 (z) =ζ2 zn+…為非常數(shù)多項式 ,P3(z)為非零多項式 ,Q1(z) ,Q2 (z)均為級小于n的整函數(shù)且不同時恒為零 。

    In this paper,we investigate the iterated order and iterated convergence exponent to zero sequence of the solutions of some classes of differential equations.

    本文研究了幾類微分方程解的迭代增[增長]級及零點迭代收斂指數(shù)。